
SeqAn is an open source C++ library of efficient algorithms and data structures for the analysis 
of biological sequences. Using a template-based library design, SeqAn aims at providing (1) 
algorithms that are generic, fast and extensible and (2) data structures that allow the rapid 
design and development of novel sequence analysis methods. The library, documentation and 
tutorials are available on the web: http://www.seqan.de 

An efficient C++ library for sequence analysis
Döring, A., Emde, A.-K., Rausch, T., Reinert, K., Schulz, M., Weese, D.

Algorithmic Bioinformatics, Freie Universität Berlin
www.seqan.de

DESIGN

“SEQUENCES”
●External, memory-mapped, 
bit-packed, heap and stack 
allocated strings.

●Sequence modifiers that 
provide distinct views on a 
sequence, e.g. an infix or 
reverse complement view.

●String iterators.

“GLOBAL INTERFACES”
●Extensibility: Global functions 
can be added at any time.

●Flexibility: Algorithms can be 
specialized for new data types.

●Integration: C++ built-in types 
can be handled like user-
defined types.

“METAFUNCTIONS”
●Metaprogramming: A kind of 
`code´ that is evaluated at 
compile time.

●Type traits: Dependent types 
of a given type can be queried 
using metafunctions, e.g. the 
alphabet type of a string.

“TEMPLATE SUBCLASSING”
●Class specialization: Use 
partial specialization of class 
templates instead of class 
derivation to refine a given 
implementation.

●Algorithm specialization: 
Functions are overloaded for 
different levels of class 
template specialization.

“INDICES”
●Enhanced suffix array, lazy 
suffix tree, in-memory and 
external indices.

●Suffix tree iterators.
●Gapped and ungapped q-gram 
indices.

●Algorithms for finding 
maximal repeats, maximal 
unique matches and others.

“ALIGNMENTS”
●Alignment data structures.
●Dynamic programming based 
alignment algorithms.

●Configurable begin-gap and 
end-gap costs.

●Heuristic, graph-based 
multiple sequence alignment.

●Fragment chaining.

“SEARCHING”
●Exact string matching 
algorithms, e.g. Horspool, 
Shift-AND and Shift-OR.

●Approximative string matching 
algorithms, e.g. Myers bit-
vector algorithm and DP 
algorithms.

●Multiple string matching 
algorithm, e.g. Wu-Manber 
and Aho-Corasick.

●Motif search algorithms.

“GRAPHS”
●Directed and undirected 
graphs, trees, automata and 
alignment graphs.

●Specialized graphs, e.g. trie, 
factor oracle or HMM.

●Various graph algorithms, e.g. 
minimum spanning tree, 
connected components and 
many others.

“BIOLOGICALS”
●DNA, RNA and amino acid 
alphabets.

●PAM, BLOSUM and simple 
scoring schemes.

●Various file formats, e.g. Fasta 
and Genbank.

●Modified and profile alphabets.
●Base qualities.

CONTENT

APPLICATIONS
“RAZERS”

●Efficient read mapping with 
controlled sensitivity.

●Based upon Hamming or edit 
distance.

●Suitable for both, short-reads 
from next-generation 
sequencing and traditional 
Sanger reads.

●Supports paired-end mapping.

“MULTIPLE ALIGNMENT”
●Segment-based multiple 
sequence alignment.

●Generic alignments using 
graphs.

●Suitable for amino acid, DNA, 
RNA or consensus alignments.

●ReAlignment.

“MARKOV CHAINS”
●Variable order markov chain 
construction using a lazy 
suffix tree and an enhanced 
suffix array.

●Suitable to classify 
transcription factor binding 
sites, splice sites and protein 
families.


	Folie 1

