Tomorrow. -------- Forwarded Message -------- Subject: [all] Einladung zur Verteidigung meiner Bachelorarbeit Date: Mon, 27 Nov 2017 13:28:10 +0100 From: Christian Hofer <hoferch91@zedat.fu-berlin.de> To: all@mi.fu-berlin.de CC: mulzer@inf.fu-berlin.de Liebe Institutsangehörige, hiermit möchte ich Sie herzlich zur Verteidigung meiner Bachelorarbeit mit dem Titel "Fast dynamic planar convex set maintenance using finger trees" einladen. Die Verteidigung findet am Dienstag, 5. Dezember, um 12:15 Uhr in der Arnimallee 3, SR 130 statt. Betreut wurde die Arbeit von Prof. Dr. Wolfgang Mulzer. Abstract: Let a convex set in the plane be given by either a set of points or half-spaces. The maintenance of it under insertion and deletion of elements is a fundamental problem in computational geometry. This thesis considers a data-structure which solves this problem. It was drafted by the researchers Kaplan, Tarjan and Tsioutsiouliklis in a paper about kinetic heaps (priority queues with linear functions as keys rather than fixed values). However it was never written down in detail. We state their construction explicitly. Its foundation is built by a deletion-only structure which uses finger trees (height balanced trees with preferred access points) to represent convex sets. With the semi-dynamic structure at hand, a fully dynamic one may be constructed using given dynamization transformations. The binary counting scheme transformation of Bentley and Saxe yields an insertion-and-deletion structure with $O(\log^2 n)$ worst-case vertical ray query time, $O(\log n)$ amortized insertion time and $O(\log n \log \log n)$ amortized deletion time. A transformation of Brodal and Jacob results in a structure with $O(\log n)$ worst-case vertical ray query time, $O(\log n \log \log \log n)$ amortized insertion and $O(\log n \log \log n)$ amortized deletion time. Viele Grüße, Chris Hofer _______________________________________________ Automatischer Mailverteiler an Gruppe 'ml-all-mi'. Hinweise dazu siehe Hilfeseite: https://www.mi.fu-berlin.de/w/Tec/AnkuendigungsVerteiler
Attachment:
smime.p7s
Description: S/MIME Cryptographic Signature