You are cordially invited to our Monday Lecture & Colloquium on Dec 3rd at 14:15 h & 16:00 h at FU Berlin. Lecture: Monday, Dec 3rd - 14:15 h =============================================== László Kozma (Freie Universität Berlin): Self-adjusting data structures: trees and heaps =============================================== Abstract: Binary search trees (BSTs) and heaps are perhaps the simplest implementations of the dictionary and the priority queue data types. They are among the most extensively studied structures in computer science, yet, many basic questions about them remain open. What is the best strategy for updating a BST in response to queries? Is there a single strategy that is optimal for every possible scenario? Are self-adjusting trees ("splay trees", Sleator and Tarjan, 1983) optimal? In which cases can we improve upon the logarithmic worst-case cost per operation? Our understanding of heaps is even more limited. Fibonacci heaps (and their relatives) are theoretically optimal in a worst-case sense, but they perform operations outside the "pure" comparison-based heap model (in addition to being complicated in practice). Is there a simple, "self-adjusting" alternative to Fibonacci heaps? Is there, by analogy to BSTs, a heap that can adapt to regularities in the input? Are the two problems related? In my talk I will present some old and new results pertaining to this family of questions. Coffee & Tea Break Colloquium: 16:00 h =============================================================== Petr Gregor (Charles University, Prague): Incidence colorings of subquartic graphs and Cartesian products =============================================================== Abstract: Two incidences (u,e) and (v,f) of vertices u, v and edges e, f (respectively) are adjacent if u=v, or e=f, or uv is one of edges e, f. An incidence coloring of a graph G is a coloring of its incidences such that adjacent incidences have distinct colors. We show that every graph of maximal degree 4 has an incidence coloring with 7 colors. Furthermore, we present sufficient conditions for Cartesian product graphs to have incidence colorings with Delta+2 colors where Delta is the maximal degree. In particular, we confirm a conjecture of Pai et al. on incidence colorings of hypercubes. Joint work with B. Lužar and R. Soták. Location: Room 005 - Ground Floor Freie Universität Berlin Takustr. 9 14195 Berlin